博客
关于我
用tensorflow object detection api做手势识别
阅读量:742 次
发布时间:2019-03-22

本文共 5478 字,大约阅读时间需要 18 分钟。

使用TensorFlow进行目标检测:完整步骤指南

安装TensorFlow Object Detection API

TensorFlow Object Detection API 是一个强大的工具,用于实现目标检测任务。首先需要从GitHub克隆TensorFlow的模型仓库:

git clone https://github.com/tensorflow/models.git

安装完成后,按照以下步骤进行数据准备和模型训练。

数据准备

为了训练目标检测模型,我们需要摄像头捕捉图像并存储到特定目录。以下是一个简单的Python脚本示例:

import cv2cap = cv2.VideoCapture(0)idx = 0while True:    ret, frame = cap.read()    if ret is True:        cv2.imshow('frame', frame)        if idx % 5 == 0:            cv2.imwrite('gesture_data/VOC2012/JPEGImages/{}.jpg'.format(idx), frame)        cv2.waitKey(50)        idx += 1    else:        breakcv2.destroyAllWindows()

模型准备

接下来,我们需要标注图片以训练模型。使用 labelImg.exe 工具进行数据标注。由于标注数据量较大,这一步可能会比较耗时。

将数据转换为TFRecord格式

TFRecord是TensorFlow中常用的数据格式,用于高效存储和加载数据集。以下是将PASCAL VOC数据转换为TFRecord的命令:

cd /path/to/tensorflow/models/researchpython object_detection/dataset_tools/create_pascal_tf_record.py \    --label_map_path=/path/to/label_map.pbtxt \    --data_dir=/path/to/data \    --year=VOC2012 \    --set=train \    --output_path=/path/to/output.record \    --category=hand

注意:确保修改 create_pascal_tf_record.py 文件,使其支持自定义分类。

迁移训练

使用预训练模型进行迁移训练可以加速模型收敛。以下是迁移训练的命令示例:

cd /path/to/tensorflow/models/researchpython object_detection/model_main.py \    --pipeline_config_path=/path/to/config-file \    --model_dir=/path/to/training-data \    --num_train_steps=1000 \    --num_eval_steps=15

导出模型

训练完成后,需要将模型导出为可推理的格式:

cd /path/to/tensorflow/models/researchpython object_detection/export_inference_graph.py \    --input_type=image_tensor \    --pipeline_config_path=/path/to/config-file \    --trained_checkpoint-prefix=/path/to/training-model.ckpt \    --output-directory=/path/to/exported-model

使用模型

导出后的模型文件可以用于推理,以下是一个使用模型的示例代码:

import pathlibimport cv2 as cvimport numpy as npimport osimport tarfileimport tensorflow as tfimport zipfilefrom collections import defaultdictfrom io import StringIOfrom matplotlib import pyplot as pltfrom PIL import Imagefrom IPython.display import displayfrom object_detection.utils import ops as utils_opsfrom object_detection.utils import label_map_utilfrom object_detection.utils import visualization_utils as vis_util# TensorFlow 1.x兼容性修复utils_ops.tf = tf.compat.v1tf.gfile = tf.io.gfile# 加载标签映射文件PATH_TO_LABELS = '/path/to/label_map.pbtxt'category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)# 导入已训练模型PATH_TO_FROZEN_GRAPH = '/path/to/exported-model/frozen_inference_graph.pb'detection_graph = tf.Graph()with detection_graph.as_default():    od_graph_def = tf.GraphDef()    with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:        serialized_graph = fid.read()        od_graph_def.ParseFromString(serialized_graph)        tf.import_graph_def(od_graph_def, name='')def run_inference_for_single_image(image, graph):    with graph.as_default():        with tf.Session() as sess:            ops = tf.get_default_graph().get_operations()            all_tensor_names = {output.name for op in ops for output in op.outputs}            tensor_dict = {}            for key in ['num_detections', 'detection_boxes', 'detection_scores', 'detection_classes', 'detection_masks']:                tensor_name = key + ':0'                if tensor_name in all_tensor_names:                    tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(tensor_name)            if 'detection_masks' in tensor_dict:                # 简化处理,适用于单张图片                detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])                detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])                real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)                detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])                detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])                detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(                    detection_masks, detection_boxes, image.shape[0], image.shape[1])                detection_masks_reframed = tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8)                tensor_dict['detection_masks'] = tf.expand_dims(detection_masks_reframed, 0)            image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')            output_dict = sess.run(tensor_dict,                                   feed_dict={image_tensor: np.expand_dims(image, 0)})            output_dict['num_detections'] = int(output_dict['num_detections'][0])            output_dict['detection_classes'] = output_dict['detection_classes'][0].astype(np.uint8)            output_dict['detection_boxes'] = output_dict['detection_boxes'][0]            output_dict['detection_scores'] = output_dict['detection_scores'][0]            if 'detection_masks' in output_dict:                output_dict['detection_masks'] = output_dict['detection_masks'][0]            return output_dict# 加载示例图片image_path = 'data/test_images/hand/two.jpg'image = cv.imread(image_path)# 进行推理output_dict = run_inference_for_single_image(image, detection_graph)# 可视化结果vis_util.visualize_boxes_and_labels_on_image_array(    image,    output_dict['detection_boxes'],    output_dict['detection_classes'],    output_dict['detection_scores'],    category_index,    instance_masks=output_dict.get('detection_masks'),    min_score_thresh=0.5,    use_normalized_coordinates=True,    line_thickness=4)# 保存结果cv.imwrite('data/test_images/hand/two-result.jpg', image)cv.destroyAllWindows()

转载地址:http://mjkwk.baihongyu.com/

你可能感兴趣的文章
numpy绘制热力图
查看>>
numpy转PIL 报错TypeError: Cannot handle this data type
查看>>
Numpy闯关100题,我闯了95关,你呢?
查看>>
nump模块
查看>>
Nutch + solr 这个配合不错哦
查看>>
NuttX 构建系统
查看>>
NutUI:京东风格的轻量级 Vue 组件库
查看>>
NutzCodeInsight 2.0.7 发布,为 nutz-sqltpl 提供友好的 ide 支持
查看>>
NutzWk 5.1.5 发布,Java 微服务分布式开发框架
查看>>
NUUO网络视频录像机 css_parser.php 任意文件读取漏洞复现
查看>>
Nuxt Time 使用指南
查看>>
NuxtJS 接口转发详解:Nitro 的用法与注意事项
查看>>
NVDIMM原理与应用之四:基于pstore 和 ramoops保存Kernel panic日志
查看>>
NVelocity标签使用详解
查看>>
NVelocity标签设置缓存的解决方案
查看>>
Nvidia Cudatoolkit 与 Conda Cudatoolkit
查看>>
NVIDIA GPU 的状态信息输出,由 `nvidia-smi` 命令生成
查看>>
nvidia 各种卡
查看>>
Nvidia 系列显卡大解析 B100、A40、A100、A800、H100、H800、V100 该如何选择,各自的配置详细与架构详细介绍,分别运用于哪些项目场景
查看>>
NVIDIA-cuda-cudnn下载地址
查看>>