博客
关于我
用tensorflow object detection api做手势识别
阅读量:742 次
发布时间:2019-03-22

本文共 5478 字,大约阅读时间需要 18 分钟。

使用TensorFlow进行目标检测:完整步骤指南

安装TensorFlow Object Detection API

TensorFlow Object Detection API 是一个强大的工具,用于实现目标检测任务。首先需要从GitHub克隆TensorFlow的模型仓库:

git clone https://github.com/tensorflow/models.git

安装完成后,按照以下步骤进行数据准备和模型训练。

数据准备

为了训练目标检测模型,我们需要摄像头捕捉图像并存储到特定目录。以下是一个简单的Python脚本示例:

import cv2cap = cv2.VideoCapture(0)idx = 0while True:    ret, frame = cap.read()    if ret is True:        cv2.imshow('frame', frame)        if idx % 5 == 0:            cv2.imwrite('gesture_data/VOC2012/JPEGImages/{}.jpg'.format(idx), frame)        cv2.waitKey(50)        idx += 1    else:        breakcv2.destroyAllWindows()

模型准备

接下来,我们需要标注图片以训练模型。使用 labelImg.exe 工具进行数据标注。由于标注数据量较大,这一步可能会比较耗时。

将数据转换为TFRecord格式

TFRecord是TensorFlow中常用的数据格式,用于高效存储和加载数据集。以下是将PASCAL VOC数据转换为TFRecord的命令:

cd /path/to/tensorflow/models/researchpython object_detection/dataset_tools/create_pascal_tf_record.py \    --label_map_path=/path/to/label_map.pbtxt \    --data_dir=/path/to/data \    --year=VOC2012 \    --set=train \    --output_path=/path/to/output.record \    --category=hand

注意:确保修改 create_pascal_tf_record.py 文件,使其支持自定义分类。

迁移训练

使用预训练模型进行迁移训练可以加速模型收敛。以下是迁移训练的命令示例:

cd /path/to/tensorflow/models/researchpython object_detection/model_main.py \    --pipeline_config_path=/path/to/config-file \    --model_dir=/path/to/training-data \    --num_train_steps=1000 \    --num_eval_steps=15

导出模型

训练完成后,需要将模型导出为可推理的格式:

cd /path/to/tensorflow/models/researchpython object_detection/export_inference_graph.py \    --input_type=image_tensor \    --pipeline_config_path=/path/to/config-file \    --trained_checkpoint-prefix=/path/to/training-model.ckpt \    --output-directory=/path/to/exported-model

使用模型

导出后的模型文件可以用于推理,以下是一个使用模型的示例代码:

import pathlibimport cv2 as cvimport numpy as npimport osimport tarfileimport tensorflow as tfimport zipfilefrom collections import defaultdictfrom io import StringIOfrom matplotlib import pyplot as pltfrom PIL import Imagefrom IPython.display import displayfrom object_detection.utils import ops as utils_opsfrom object_detection.utils import label_map_utilfrom object_detection.utils import visualization_utils as vis_util# TensorFlow 1.x兼容性修复utils_ops.tf = tf.compat.v1tf.gfile = tf.io.gfile# 加载标签映射文件PATH_TO_LABELS = '/path/to/label_map.pbtxt'category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)# 导入已训练模型PATH_TO_FROZEN_GRAPH = '/path/to/exported-model/frozen_inference_graph.pb'detection_graph = tf.Graph()with detection_graph.as_default():    od_graph_def = tf.GraphDef()    with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:        serialized_graph = fid.read()        od_graph_def.ParseFromString(serialized_graph)        tf.import_graph_def(od_graph_def, name='')def run_inference_for_single_image(image, graph):    with graph.as_default():        with tf.Session() as sess:            ops = tf.get_default_graph().get_operations()            all_tensor_names = {output.name for op in ops for output in op.outputs}            tensor_dict = {}            for key in ['num_detections', 'detection_boxes', 'detection_scores', 'detection_classes', 'detection_masks']:                tensor_name = key + ':0'                if tensor_name in all_tensor_names:                    tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(tensor_name)            if 'detection_masks' in tensor_dict:                # 简化处理,适用于单张图片                detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])                detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])                real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)                detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])                detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])                detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(                    detection_masks, detection_boxes, image.shape[0], image.shape[1])                detection_masks_reframed = tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8)                tensor_dict['detection_masks'] = tf.expand_dims(detection_masks_reframed, 0)            image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')            output_dict = sess.run(tensor_dict,                                   feed_dict={image_tensor: np.expand_dims(image, 0)})            output_dict['num_detections'] = int(output_dict['num_detections'][0])            output_dict['detection_classes'] = output_dict['detection_classes'][0].astype(np.uint8)            output_dict['detection_boxes'] = output_dict['detection_boxes'][0]            output_dict['detection_scores'] = output_dict['detection_scores'][0]            if 'detection_masks' in output_dict:                output_dict['detection_masks'] = output_dict['detection_masks'][0]            return output_dict# 加载示例图片image_path = 'data/test_images/hand/two.jpg'image = cv.imread(image_path)# 进行推理output_dict = run_inference_for_single_image(image, detection_graph)# 可视化结果vis_util.visualize_boxes_and_labels_on_image_array(    image,    output_dict['detection_boxes'],    output_dict['detection_classes'],    output_dict['detection_scores'],    category_index,    instance_masks=output_dict.get('detection_masks'),    min_score_thresh=0.5,    use_normalized_coordinates=True,    line_thickness=4)# 保存结果cv.imwrite('data/test_images/hand/two-result.jpg', image)cv.destroyAllWindows()

转载地址:http://mjkwk.baihongyu.com/

你可能感兴趣的文章
mysql的优化策略有哪些
查看>>
MySQL的使用
查看>>
mysql的全文检索的方法
查看>>
mysql的函数DATE_ADD()
查看>>
mysql的函数操作
查看>>
Mysql的分表设计方法 (水平分表和垂直分表)
查看>>
mysql的分页查询limit关键字
查看>>
MySql的创建数据表、约束、外键约束的创建修改删除、级联操作
查看>>
MySQL的四大隔离级别,你都知道哪些?
查看>>
MySQL的四种事务隔离级别
查看>>
MySQL的基本命令
查看>>
Mysql的备份与恢复类型
查看>>
mysql的密码管理、mysql初始密码查找、密码修改、mysql登录
查看>>
mysql的常见八股文面试题
查看>>
MySQL的常见命令
查看>>
mysql的引擎以及优缺点_MySQL有哪些存储引擎,各自的优缺点,应用场景-阿里云开发者社区...
查看>>
MySQL的操作:
查看>>
mysql的数据类型有哪些?
查看>>
mysql的语法规范
查看>>
mysql的配置文件参数
查看>>