博客
关于我
用tensorflow object detection api做手势识别
阅读量:742 次
发布时间:2019-03-22

本文共 5478 字,大约阅读时间需要 18 分钟。

使用TensorFlow进行目标检测:完整步骤指南

安装TensorFlow Object Detection API

TensorFlow Object Detection API 是一个强大的工具,用于实现目标检测任务。首先需要从GitHub克隆TensorFlow的模型仓库:

git clone https://github.com/tensorflow/models.git

安装完成后,按照以下步骤进行数据准备和模型训练。

数据准备

为了训练目标检测模型,我们需要摄像头捕捉图像并存储到特定目录。以下是一个简单的Python脚本示例:

import cv2cap = cv2.VideoCapture(0)idx = 0while True:    ret, frame = cap.read()    if ret is True:        cv2.imshow('frame', frame)        if idx % 5 == 0:            cv2.imwrite('gesture_data/VOC2012/JPEGImages/{}.jpg'.format(idx), frame)        cv2.waitKey(50)        idx += 1    else:        breakcv2.destroyAllWindows()

模型准备

接下来,我们需要标注图片以训练模型。使用 labelImg.exe 工具进行数据标注。由于标注数据量较大,这一步可能会比较耗时。

将数据转换为TFRecord格式

TFRecord是TensorFlow中常用的数据格式,用于高效存储和加载数据集。以下是将PASCAL VOC数据转换为TFRecord的命令:

cd /path/to/tensorflow/models/researchpython object_detection/dataset_tools/create_pascal_tf_record.py \    --label_map_path=/path/to/label_map.pbtxt \    --data_dir=/path/to/data \    --year=VOC2012 \    --set=train \    --output_path=/path/to/output.record \    --category=hand

注意:确保修改 create_pascal_tf_record.py 文件,使其支持自定义分类。

迁移训练

使用预训练模型进行迁移训练可以加速模型收敛。以下是迁移训练的命令示例:

cd /path/to/tensorflow/models/researchpython object_detection/model_main.py \    --pipeline_config_path=/path/to/config-file \    --model_dir=/path/to/training-data \    --num_train_steps=1000 \    --num_eval_steps=15

导出模型

训练完成后,需要将模型导出为可推理的格式:

cd /path/to/tensorflow/models/researchpython object_detection/export_inference_graph.py \    --input_type=image_tensor \    --pipeline_config_path=/path/to/config-file \    --trained_checkpoint-prefix=/path/to/training-model.ckpt \    --output-directory=/path/to/exported-model

使用模型

导出后的模型文件可以用于推理,以下是一个使用模型的示例代码:

import pathlibimport cv2 as cvimport numpy as npimport osimport tarfileimport tensorflow as tfimport zipfilefrom collections import defaultdictfrom io import StringIOfrom matplotlib import pyplot as pltfrom PIL import Imagefrom IPython.display import displayfrom object_detection.utils import ops as utils_opsfrom object_detection.utils import label_map_utilfrom object_detection.utils import visualization_utils as vis_util# TensorFlow 1.x兼容性修复utils_ops.tf = tf.compat.v1tf.gfile = tf.io.gfile# 加载标签映射文件PATH_TO_LABELS = '/path/to/label_map.pbtxt'category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)# 导入已训练模型PATH_TO_FROZEN_GRAPH = '/path/to/exported-model/frozen_inference_graph.pb'detection_graph = tf.Graph()with detection_graph.as_default():    od_graph_def = tf.GraphDef()    with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:        serialized_graph = fid.read()        od_graph_def.ParseFromString(serialized_graph)        tf.import_graph_def(od_graph_def, name='')def run_inference_for_single_image(image, graph):    with graph.as_default():        with tf.Session() as sess:            ops = tf.get_default_graph().get_operations()            all_tensor_names = {output.name for op in ops for output in op.outputs}            tensor_dict = {}            for key in ['num_detections', 'detection_boxes', 'detection_scores', 'detection_classes', 'detection_masks']:                tensor_name = key + ':0'                if tensor_name in all_tensor_names:                    tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(tensor_name)            if 'detection_masks' in tensor_dict:                # 简化处理,适用于单张图片                detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])                detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])                real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)                detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])                detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])                detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(                    detection_masks, detection_boxes, image.shape[0], image.shape[1])                detection_masks_reframed = tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8)                tensor_dict['detection_masks'] = tf.expand_dims(detection_masks_reframed, 0)            image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')            output_dict = sess.run(tensor_dict,                                   feed_dict={image_tensor: np.expand_dims(image, 0)})            output_dict['num_detections'] = int(output_dict['num_detections'][0])            output_dict['detection_classes'] = output_dict['detection_classes'][0].astype(np.uint8)            output_dict['detection_boxes'] = output_dict['detection_boxes'][0]            output_dict['detection_scores'] = output_dict['detection_scores'][0]            if 'detection_masks' in output_dict:                output_dict['detection_masks'] = output_dict['detection_masks'][0]            return output_dict# 加载示例图片image_path = 'data/test_images/hand/two.jpg'image = cv.imread(image_path)# 进行推理output_dict = run_inference_for_single_image(image, detection_graph)# 可视化结果vis_util.visualize_boxes_and_labels_on_image_array(    image,    output_dict['detection_boxes'],    output_dict['detection_classes'],    output_dict['detection_scores'],    category_index,    instance_masks=output_dict.get('detection_masks'),    min_score_thresh=0.5,    use_normalized_coordinates=True,    line_thickness=4)# 保存结果cv.imwrite('data/test_images/hand/two-result.jpg', image)cv.destroyAllWindows()

转载地址:http://mjkwk.baihongyu.com/

你可能感兴趣的文章
NIFI从MySql中离线读取数据再导入到MySql中_无分页功能_02_转换数据_分割数据_提取JSON数据_替换拼接SQL_添加分页---大数据之Nifi工作笔记0037
查看>>
NIFI从PostGresql中离线读取数据再导入到MySql中_带有数据分页获取功能_不带分页不能用_NIFI资料太少了---大数据之Nifi工作笔记0039
查看>>
nifi使用过程-常见问题-以及入门总结---大数据之Nifi工作笔记0012
查看>>
NIFI分页获取Mysql数据_导入到Hbase中_并可通过phoenix客户端查询_含金量很高的一篇_搞了好久_实际操作05---大数据之Nifi工作笔记0045
查看>>
NIFI同步MySql数据_到SqlServer_错误_驱动程序无法通过使用安全套接字层(SSL)加密与SQL Server_Navicat连接SqlServer---大数据之Nifi工作笔记0047
查看>>
Nifi同步过程中报错create_time字段找不到_实际目标表和源表中没有这个字段---大数据之Nifi工作笔记0066
查看>>
NIFI大数据进阶_FlowFile拓扑_对FlowFile内容和属性的修改删除添加_介绍和描述_以及实际操作---大数据之Nifi工作笔记0023
查看>>
NIFI大数据进阶_NIFI的模板和组的使用-介绍和实际操作_创建组_嵌套组_模板创建下载_导入---大数据之Nifi工作笔记0022
查看>>
NIFI大数据进阶_NIFI监控的强大功能介绍_处理器面板_进程组面板_summary监控_data_provenance事件源---大数据之Nifi工作笔记0025
查看>>
NIFI大数据进阶_NIFI集群知识点_认识NIFI集群以及集群的组成部分---大数据之Nifi工作笔记0014
查看>>
NIFI大数据进阶_NIFI集群知识点_集群的断开_重连_退役_卸载_总结---大数据之Nifi工作笔记0018
查看>>
NIFI大数据进阶_内嵌ZK模式集群1_搭建过程说明---大数据之Nifi工作笔记0015
查看>>
NIFI大数据进阶_外部ZK模式集群1_实际操作搭建NIFI外部ZK模式集群---大数据之Nifi工作笔记0017
查看>>
NIFI大数据进阶_实时同步MySql的数据到Hive中去_可增量同步_实时监控MySql数据库变化_操作方法说明_01---大数据之Nifi工作笔记0033
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_01_实际操作---大数据之Nifi工作笔记0029
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_02_实际操作_splitjson处理器_puthdfs处理器_querydatabasetable处理器---大数据之Nifi工作笔记0030
查看>>
NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
查看>>
NIFI数据库同步_多表_特定表同时同步_实际操作_MySqlToMysql_可推广到其他数据库_Postgresql_Hbase_SqlServer等----大数据之Nifi工作笔记0053
查看>>
NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南001---大数据之Nifi工作笔记0068
查看>>
NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南002---大数据之Nifi工作笔记0069
查看>>